Friday, October 28, 2011

2010 Mercedes-Benz S-Class AMG Sports Package

For the first time, there is an AMG Sports package for the 2010 Mercedes-Benz S-Class and the CL-Class. With revamped AMG bodystyling, attractive 19-inch AMG light-alloy wheels and special interior details, both top Mercedes-Benz models can now be made more striking than ever in terms of sportiness. The appealing combination of exclusive equipment features, many of which are not available separately, is proving increasingly popular with customers. The AMG Sports package is now available for five Mercedes model types.


New AMG bodystyling, including a front apron with large air intakes, enhances the visual impact of the S-Class and the CL-Class. The rear apron with a striking black insert and integrated, rectangular tailpipe trim in polished stainless steel is also eye-catching. AMG side sill panels round off the AMG bodystyling. 19-inch AMG light-alloy wheels with a five-spoke design and wide-base 255/40 (front) and 275/40 (rear) tyres fill the wheel arches perfectly and provide optimum contact with the road. 20-inch AMG light-alloy wheels are available as an option in a twin-spoke design with 255/35 and 275/35 tyres. Mounted on the front axle there are perforated brake discs and silver-painted brake callipers featuring Mercedes-Benz lettering; the V6 models have a more generously proportioned braking system.

Wood trim and the wood/leather steering wheel in black ash give the high-quality vehicle interior a dynamic feel. The AMG Sports package also includes velour floor mats with AMG lettering and sports pedals in brushed stainless steel with rubber studs.
The AMG Sports package is available for all S-Class models with a short or long wheelbase, as well as for the CL 500 and CL 500 4MATIC. It costs between 5831 and 7973 euros (including 19% VAT); the market launch commences in June 2009. In addition to the S-Class and CL-Class, the E-Class Saloon, the E-Class Coupé and the C-Class can be equipped with the AMG Sports package.















2010 Mercedes-Benz S400 BlueHYBRID


Mercedes-Benz is launching its first passenger car model equipped with a hybrid drive system in summer 2009 - the Mercedes-Benz S400 BlueHYBRID. The combination of a modified V6 petrol engine and a compact hybrid module makes the Mercedes-Benz S400 BlueHYBRID the world's most economical luxury saloon with a spark-ignition engine. The NEDC combined fuel consumption is a mere 7.9 litres per 100 kilometres. This makes for the world's lowest CO2 emissions in this vehicle and performance class - just 190 grams per kilometre. These exemplary figures go hand in hand with assured performance. The 3.5-litre petrol engine develops an output of 205 kW/279 hp, the electric motor generates 15 kW/20 hp and a starting torque of 160 Nm. The result is a combined output of 220 kW/299 hp and a combined maximum torque of 385 newton metres. Moreover, the new Mercedes-Benz S400 BlueHYBRID is the first series-production model to be equipped with a particularly efficient lithium-ion battery specially developed for automotive use. This is another major contribution by Mercedes-Benz to the electrification of the car.
The new Mercedes-Benz S400 BlueHYBRID is based on the S350, and features an extensively modified drive train. This encompasses a further development of the 3.5-litre V6 petrol engine, an additional magneto-electric motor, the 7G-TRONIC seven-speed automatic transmission specially configured for the hybrid module, the necessary operating and control electronics, the transformer and a high-voltage lithium-ion battery.

The compact hybrid module is a disc-shaped electric motor that also acts as a starter and generator. The system offers a double benefit, as it both helps to save fuel and increases driving enjoyment. This is partly due to the booster effect of the electric motor, as it powerfully backs up the petrol engine with a maximum additional torque of 160 newton metres during the high-consumption acceleration phase. The driver benefits from the combined action of these two units in the form of even more impressive torque characteristics and smooth, effortlessly superior acceleration.
The hybrid module also has a comfortable start/stop function, which switches the engine off when the vehicle is at a standstill - for example at traffic lights. When it's time to move off again, the electric motor almost imperceptibly restarts the main power unit. This likewise makes a contribution to fuel economy and environmental protection: because the engine restarts first time, and practically instantly, emissions are also minimised during the starting phase.
When the vehicle is braked the electric motor acts as a generator, and is able to recover braking energy by a process known as recuperation. Working in finely tuned partnership, the electric motor supplements the braking effect of the petrol engine and the wheel brakes to deliver a smoothly progressive braking action. The recuperated energy is stored in a compact yet highly efficient lithium-ion battery in the engine compartment, and made available when required. This complex system is managed by a high-performance control unit, which is likewise located in the engine compartment.

A milestone on the road to electrification
The centrepiece of the modular, very compact and highly efficient hybrid drive system is the new high-voltage lithium-ion battery, which was specially developed for automotive use and is the first such unit worldwide to be introduced in a series-production vehicle. In this way Mercedes-Benz is making a trailblazing contribution to the electrification of the car, with the Mercedes-Benz S-Class once again playing the role of the technological trendsetter.
Major advantages over conventional nickel/metal hydride batteries include a higher energy density and better electrical efficiency, together with more compact dimensions and a lower weight. Thanks to space-saving installation in the engine compartment, where it replaces the conventional starter battery, the generous interior space and boot capacity of the S400 remain unchanged. The lithium-ion battery not only stores energy for the electric motor, but is also connected to the 12-Volt onboard network via the transformer to supply power to other standard consumers such as the headlamps and comfort features. The completely newly designed battery system consists of the cell block with its lithium-ion cells and the cell monitoring system, the battery management function, the high-strength housing, the cooling gel, the cooling plate, the coolant feed and the high-voltage connector.

Optimised thermal efficiency lowers the engine's fuel consumption
The 3.5-litre V6 petrol engine with variable valve control has been throughly re-engineered and improved. In the process the development engineers made use of the advantages offered by the Atkinson principle,where the expansion phase is longer than the compression phase. The intake valve is kept open slightly longer between the intake and compression phases, which improves the engine's thermal efficiency while reducing the specific fuel consumption and untreated emissions. A new cylinder head, different pistons and a modified camshaft with different camshaft control increase the output by 5 kW/7 hp to 205 kW/279 hp - while reducing fuel consumption at the same time.
Especially on rural journeys and on motorways, the Mercedes-Benz S400 BlueHYBRID achieves a further efficiency improvement by moving the so-called operating point of the petrol engine to produce a lower specific fuel consumption. The extremely high start-off torque made possible by the boost effect of the electric motor gives the driver a particularly exhilarating feeling of powerful acceleration, while fuel consumption and emissions are reduced.

The electric motor improves efficiency
The compact, disc-shaped electric motor, which is space-savingly installed in the torque converter housing between the engine and the 7G-TRONIC seven-speed automatic transmission, improves efficiency even further. This is a 3-phase AC external rotor magneto motor, which develops a peak output of 15 kW/20 hp and a starting torque of 160 newton metres with an operating voltage of 120 Volts.
This compact motor also acts as a starter and generator, adopting the functions of both these conventional ancillary units.
Sophisticated interaction with the internal combustion engine makes numerous additional functions possible that positively influence the emissions and agility of the Mercedes-Benz S400 BlueHYBRID in equal measure. Moreover, this disc-shaped motor effectively dampens torsional vibrations in the drive train, thereby further reducing noise and vibrations in the interior. The result is even more ride comfort for both driver and passengers.

"Boost" effect for even more driving pleasure
The overall system offers extensive benefits: firstly by helping to save fuel, and secondly by increasing driving pleasure with the help of the "boost" effect, where the electric motor gives powerful assistance to the petrol engine with its maximum torque of 160 newton metres right from the beginning of the fuel-intensive acceleration phase. This means that the hybrid drive system of the Mercedes-Benz S400 BlueHYBRID moves off powerfully even from very low engine speeds, as the torque curve impressively confirms. The additional torque of the hybrid module also has a consistently positive effect during subsequent acceleration phases. In all driving situations, the driver therefore benefits from the interaction between the two units in the form of powerful responsiveness and muscular torque - but without an increased fuel consumption.
The Mercedes-Benz S400 BlueHYBRID accelerates from zero to 100 km/h in 7.2 seconds, and reaches an electronically governed top speed of 250 km/h. The Mercedes-Benz S400 BlueHYBRID betters the already very favourable NEDC fuel consumption of the conventionally powered S350 by up to 2.2 litres per 100 kilometres. CO2 emissions are reduced by 21 percent.

The start/stop function already saves fuel when rolling to a stop
In addition the hybrid module features an extremely comfortable and efficient start/stop function, which already switches the engine off when the vehicle is rolling to a stop at less than 15 km/h, for example before stopping at traffic lights. When it's time to move off again, the electric motor immediately and imperceptibly restarts the main engine as soon as the driver releases the brake pedal or operates the accelerator. This likewise contributes to fuel economy and environmental conservation: as the engine restarts practically instantly, emissions are also minimised during the starting phase. The vibrations and jolts that are unavoidable when starting with a conventional starter are also reduced to a minimum.
Steering and climatic comfort remain unchanged, as both the steering servo pump and the refrigerant compressor are electrically powered. Both systems therefore continue to operate even when the vehicle is at a standstill with the engine automatically switched off. The intelligent control logic is able to detect whether the driver is executing a turning or parking manoeuvre. In this case the automatic start/stop function is temporarily deactivated, so that these manoeuvres can be carried out in comfort.

Every braking action generates electric power for the battery
When the vehicle is braked, the electric motor acts as a generator and uses a process known as recuperation to convert the kinetic energy into electrical energy. This energy is stored in the compact yet highly efficient lithium-ion battery, and made available when required.
In the process the electric motor assists the engine braking effect of the internal combustion engine in two smooth, seamless stages: In stage one, on the overrun with no braking action, the electric motor acts as a generator and begins to recuperate energy. Stage two commences as soon as the driver lightly operates the brake pedal: the generator output is then increased proportionally, and perceived as heavier deceleration by the driver. Only when more brake pedal pressure is applied are the wheel brakes activated in addition to recuperation. In this way more electrical energy can be generated, while saving wear and tear on the hydraulic braking system at the same time. To make the best possible use of this double benefit, Mercedes engineers also developed a new braking system with a new brake pedal module for the Mercedes-Benz S400 BlueHYBRID.

Cleverly located control electronics
Dedicated control electronics are required to operate the 3-phase AC electric motor in the 120-Volt high-voltage DC network. The current converter is accommodated in the space formerly occupied by the starter. As the control electronics heat up as a result of electric currents measuring up to 150 amps, the system is equipped with its own, additional low-temperature cooling circuit.
Mercedes-Benz engineers have accommodated the transformer in the right front wheel arch, where it facilitates the exchange of energy between the 120-Volt high-voltage network and the 12-Volt onboard network - and also allows the option of emergency starting with jump leads if the standard battery should lose its charge. To ensure a consistently high level of electrical efficiency, the transformer is likewise cooled by a low-temperature circuit. The 12-Volt lead/acid battery is installed in the boot, and not only supplies the standard consumers but also the monitoring system for the high-voltage components with energy. Thanks to its interaction with the lithium-ion battery, it is considerably smaller in size and lighter than usual.

Tried-and-tested automatic transmission with a new configuration
Mercedes-Benz developers also adapted the well-proven 7G-TRONIC automatic transmission to suit the hybrid drive, with newly programmed software for the transmission management system. A newly developed auxiliary oil pump ensures reliable lubrication of the transmission even during phases when the internal combustion engine is switched off.
This complex system is managed by the modified high-performance engine control unit. This incorporates extensive functions, and distinguishes between operating conditions such as city traffic, rural journeys, motorway driving or slow manoeuvring.

Hybrid status is shown in the instrument cluster
The driver is also able to monitor the status of the hybrid drive system visually. The instrument cluster has a separate, centrally positioned, display showing the energy flow during boost and recuperation phases, as well as the battery charge status.

Seven-stage safety concept in addition to the Mercedes-Benz standard
As is usual at Mercedes-Benz, the development engineers gave safety aspects their very special attention. Know-how incorporated into the series-production car included long years of Daimler research experience with fuel-cell technology. The challenge lay in not only complying with all the worldwide and in-house legal crash test requirements, but also in ensuring the greatest possible safety for the electrical components. This safety system already applies in production, includes workshop personnel during servicing and maintenance, and also takes the emergency services into account when passengers need to be recovered following an accident.
Accordingly the hybrid technology of the Mercedes-Benz S400 BlueHYBRID is equipped with an extensive 7-stage safety concept.
  1. In the first stage all the wiring is colour-coded to eliminate confusion, and marked with safety instructions. This prevents assembly errors in production, and makes the regular quality checks easier to carry out.
  2. The second stage comprises comprehensive contact protection for the entire system by means of generous insulation and newly developed, dedicated connectors.
  3. As part of the third stage, the world's first lithium-ion battery to be used in a series-production model has been given a whole package of carefully coordinated safety measures. This innovative battery is accommodated in a high-strength steel housing, and also secured in place. Bedding the battery cells in a special gel effectively dampens any jolts and knocks. There is also a blow-off vent with a rupture disc and a separate cooling circuit. An internal electronic controller continuously monitors the safety requirements and immediately signals any malfunctions.
  4. The fourth stage of the safety concept includes separation of the battery terminals, individual safety-wiring for all high-voltage components and continuous monitoring by multiple interlock switches. This means that all high-voltage components are connected by an electric loop. In the event of a malfunction the high-voltage system is automatically switched off.
  5. Active discharging of the high-voltage system as soon as the ignition is switched to "Off", or in the event of a malfunction, is part of the fifth stage.
  6. During an accident, the high-voltage system is completely switched off within fractions of a second (stage six).
  7. As the seventh and last stage, the system is continuously monitored for short circuits.
Thanks to its compact dimensions and modular design, the additional weight of the overall system is only 75 kilograms - including the comprehensive safety systems. The superior driving experience for which a Mercedes is known is therefore ensured by this trailblazing and very versatile technology, which can be used for practically all Mercedes-Benz model series. Moreover, the payload remains unchanged at 595 kilograms.
The intelligent high-performance engine management system responds very sensitively to different driving conditions, and optimally configures the drive system for the relevant application, ensuring that both fuel consumption and emissions are kept to the lowest possible level.
At standstill the petrol engine is usually switched off, and therefore consumes no fuel. The electric drive of the refrigerant compressor and steering servo pump allows uninterrupted operation of the air conditioning and power steering. Comfort is in no way compromised, and is at the same high level as in all S-Class models.
Moving off and acceleratingaway gently remains a smooth and comfortable procedure. A driver who kicks down the accelerator for a brisk start benefits from the boost function of the electric motor, which produces considerably more dynamic acceleration.
At constant speedsthe intelligent electronics recognise situations such as relaxed motorway stretches, and automatically adjust the load point of the internal combustion engine to achieve a lower specific fuel consumption, thereby helping to save fuel and reduce emissions.
When rolling to a stopthe recuperation function is activated as soon as the drive is interrupted in any way (foot off the accelerator, engine braking). Once the vehicle speed falls below 15 km/h, the petrol engine is automatically switched off.
If the driver brakes using the brake pedal, the electric motor initially begins to convert the vehicle's kinetic energy into electrical energy. In this case the electric motor acts as a generator, storing the kinetic energy as electrical energy in the lithium-ion battery. This process feels like a stronger engine braking effect to the driver. The conventional disc brakes at the wheels are not yet employed, saving wear and tear. The disc brakes are only activated if the driver applies heavy pressure to the brake pedal, braking the car together with the engine brake and recuperation.
Once the driver selects "R" (reverse) in the 7G-TRONIC automatic transmission when manoeuvring, this automatically activates the Manoeuvring mode and prevents the start/stop function from switching off the engine at short, frequent intervals.
The advantages of the hybrid drive system really come into their own in city traffic, with frequent stops at red traffic lights. Already switching off the petrol engine as the car frequently coasts to a stop significantly lowers the fuel consumption and emissions, while the long recuperation phases increase the battery charge. The electric motor ensures particularly comfortable and rapid restarting when the start/stop function is active.
On rural roadsthere are frequent changes between boost, constant speed and recuperation phases. Depending on the nature of the route, large quantities of recuperation energy are available to reduce fuel consumption and emissions. The more braking and acceleration phases there are, the better: uphill and downhill gradients, as well as winding, dynamic stretches, make for the largest savings.
The hybrid effect is inherently less important on motorways, however thanks to specific modifications to the V6 petrol engine and the 7G-TRONIC automatic transmission, the driver is also able to achieve significant fuel savings and correspondingly lower emissions on fast road stretches like these.
The Mercedes-Benz S400 BlueHYBRID is produced at the Sindelfingenplant, together with the other S-Class models. The petrol engine, 7G-TRONIC automatic transmission and electric motor are first put together to form a hybrid module, then delivered to the production line as a unit. The market launch in western Europe is planned for June 2009; China is expected to follow in August 2009 and the USA in September 2009.
Modular technologies for the environmentally friendly future of the premium car
The new S400 BlueHYBRID exemplifies the strategy of Mercedes-Benz, whose declared aim is to offer the brand's customers economical and environmentally compatible premium cars - without compromising in terms of typical brand attributes such as safety, comfort and a superior driving experience.
Major areas of development focus include modular drive technologies, which are used on a stand-alone basis or in combination depending on the vehicle class, operating profile and customer requirements - Mercedes-Benz has already described how this applies to the product portfolio in its "Road to the Future". In this context Mercedes-Benz also provides an outlook on the future of the internal combustion engine, with the innovative DIESOTTO engine in the Mercedes-Benz F700 research car.

Thursday, October 27, 2011

2010 Mercedes-Benz S65 AMG

The Mercedes-Benz S63 AMG and S65 AMG, the powerful top-of-the-line S-Class models, are now even more appealing: thanks to a series of subtle yet extremely effective fine-tuning measures, the two performance saloons are even more striking and priceless than ever before. The updated technology is aimed at ensuring a more dynamic driving experience as well as optimum active and passive safety.

Exclusivity and dynamism combined with effortless superiority and state-of-the-art technology - both of the top S-Class models from Mercedes-AMG embody all of these characteristics and more: the Mercedes-Benz S63 AMG, with its 386 kW/525 hp AMG 6.3-litre V8 engine developing 630 Newton metres of torque, is capable of accelerating to a speed of 100 km/h in 4.6 seconds. The Mercedes-Benz S65 AMG, meanwhile, demonstrates even greater superiority: its AMG 6.0-litre biturbo V12 engine delivers maximum power of 450 kW/612 hp and maximum torque of 1000 Newton metres, accelerating from 0 to 100 km/h in just 4.4 seconds. Both saloons are electronically limited to 250 km/h. Despite no changes having been made to the engine data and performance values, it has still been possible to reduce fuel consumption and CO2 emissions by up to 3 percent.

Contributing to the even more exceptional status of the models is the new, more pronounced arrow-shaped radiator grille, featuring twin chrome-plated louvres in the case of the Mercedes-Benz S65 AMG. The new front apron incorporates striking, AMG-specific LED daytime driving lights and two transverse air outlets on each side. Further striking features include the "6.3 AMG" or "V12 Biturbo" lettering on the front wings and redesigned exterior mirrors.

Side sill panels emphasize the elegant line of the front apron through to the rear of the vehicle, where the new rear apron features yet another highlight: the centre section of the diffuser insert is now painted in the same colour as the vehicle body. New rear lamps with 52 LED's in the form of a double "C" also give the S‑Class an unmistakable appearance from behind. A distinctive element of both models comes in the guise of the sports exhaust with two chromed twin tailpipes, featuring a V12 design in the case of the Mercedes-Benz S65 AMG. Visual aspects which distinguish the V8 from the V12 model also include the attractive AMG light alloy wheels: the S63 AMG has 19-inch multi-spoke wheels painted titanium grey with a high-sheen finish and fitted with 255/40 (front) and 275/40 (rear) tyres. The S65 AMG, on the other hand, comes with 20-inch forged wheels painted in titanium grey with a mirror finish and fitted with 255/35 (front) and 275/35 (rear) tyres.

Crosswind stabilisation, Torque Vectoring Brake and Direct-Steer system
The AMG sports suspension based on Active Body Control (ABC) provides crosswind stabilisation as standard equipment for the first time: thanks to this function, influences caused by crosswinds are compensated for, or - in the case of strong gusts - reduced to a minimum. ABC compensates against the effect of crosswinds by adjusting the wheel load distribution within milliseconds, using the yaw-rate and lateral acceleration sensors of the ESP® Electronic Stability Program.

Also making up the standard equipment is the new Torque Vectoring Brake: when cornering, brief direct application of the brakes has an effect on the vehicle's inner rear wheel so that the saloon corners precisely and under control at all times. The Torque Vectoring Brake is an additional feature of the ESP® Electronic Stability Program and not only improves responsiveness but also active handling safety, which is particularly noticeable in critical conditions. The driving experience is further heightened thanks to the Direct-Steer system: with its variable ratio depending on steering angle, it helps to ensure a more direct response when cornering, and therefore more responsive handling - in brief: enhanced driving pleasure at the wheel of the Mercedes-AMG S-Class.

Based on the ADAPTIVE BRAKE system, the high-performance braking system continues to provide optimum creep strength, deceleration and sensitivity. The front axle features a double floating brake calliper. This exclusive technology combines the advantages of a sliding-calliper disc brake - reduced heat transfer to the brake fluid and clear advantages in terms of comfort thanks to the brake lining guide mechanism - with the efficiency of an extra large fixed calliper brake.

Extensive range of standard equipment with exclusive flair
The interior appointments are every bit as exclusive as the high-tech package: as soon as its door is opened, the Mercedes-Benz S65 AMG welcomes the driver with large, animated "AMG V12 BITURBO" lettering in the instrument cluster's central display. The main menu provides the driver with information about engine oil temperature, current gear range, battery voltage, and the RACETIMER, which displays lap times when on the race track. In the case of the Mercedes-Benz S63 AMG, the extensive range of standard equipment includes not only PASSION leather appointments, with natural leather in the seat side bolsters, but also front sports seats with climate control, massage, multicontour and driving dynamics control functions. The Exclusive PASSION leather upholstery in the S65 AMG, meanwhile, with its AMG V12 diamond pattern design, exudes an air of even greater refinement. Ample use of burr walnut trim elements and the AMG-specific analogue clock, featuring an IWC design, are a given in both models. Both the SPEEDSHIFT 7G‑TRONIC of the S63 AMG, as well as the five-speed automatic SPEEDSHIFT transmission of the S65 AMG, are fitted with DIRECT SELECT gearshift. Gear changes are carried out by means of aluminium shift paddles on the new AMG sports steering wheel.

New standards in active and passive safety
In addition, both of the top-of-the-line models set new standards when it comes to active and passive safety through a combination of innovative camera and radar-based driver assistance systems. These include the ATTENTION ASSIST drowsiness detection system, Adaptive Highbeam Assist, Lane Keeping Assist, and the PRE-SAFE®Brakes, which are linked to the proximity regulating radar and intervene independently in the event of an impending accident to act like an invisible crumple zone. The Night View Assist with infrared camera also features a novel pedestrian detection system. The pictures from the windscreen camera are also used by the new Speed Limit Assist, available as an option. The Brake Assist PLUS and DISTRONIC PLUS proximity control support the driver in the event of emergency braking. The PRE-SAFE® positioning function and NECK-PRO luxury head restraints are now also included as standard.

New infotainment systems, including COMAND APS with new SPLITVIEW display, which shows different images for driver and front passenger simultaneously, enhance occupant comfort even further.
Exclusive optional extras are also available from the AMG PERFORMANCE STUDIO:
  • AMG 20-inch double-spoke forged wheels, painted in titanium grey with a mirror finish and fitted with 255/35 R 20 front and 275/30 R 20 rear tyres
  • AMG trim elements in carbon/piano lacquer
  • AMG floor mats
While the Mercedes-Benz S63 AMG is available in short or long-wheelbase versions, the S65 AMG is only available as a long-wheelbase version. Both top-of-the-line AMG models will have their market launches from June 2009.







 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Skull Belt Buckles